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Orthogonal polynomials on the unit circle are determined by their reflection
coefficients through the Szego� recurrences. In the present paper we examine two
particular classes of measures on the unit circle. The first one consists of measures
whose reflection coefficients tend to the unit circle. For such measures we give
complete description of their supports (up to the set of isolated masspoints) in
terms of reflection coefficients. The supports of measures from the second class have
finitely many limit points. We prove the unit circle analogue of M. G. Krein's
characterization for the similar class of measures on the real line. The examples of
measures from both classes are given. � 1999 Academic Press
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1. INTRODUCTION

Orthonormal polynomials on the unit circle T=def [` # C : |`|=1] are
defined by

|
T

.n(+, `) .m(+, `) d+=$m, n , m, n # Z+ =
def [0, 1, 2, ...],

where + is a probability measure T with infinite support, supp(+) (which
is, by definition, the smallest closed set whose complement has + measure
0), and

.n(+, z)=}n(+)zn+lower degree terms, }n(+)>0.

The monic orthogonal polynomials are 8n(+)=}&1
n .n(+). The reflection

coefficients an(+)=def 8n(+, 0) describe completely not only the monic
orthogonal polynomials (through the Szego� recurrences) but the orthonormal
polynomials as well.
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There is one-to-one corespondence between probability measures on T
and sequences of complex numbers [an] with |an |<1. According to the
analogue of Favard's theorem for the unit circle for each such sequence
there exists a unique probability measure + on T with 8n(+, 0)=an (see,
e.g. [10] for a simple proof of this result). Thereby, we arrive at apparently
quite natural (although rather intricate) parametization of the set of all
probability measures on T.

The relation between the properties of measures and the asymptotic
behavior of their reflection coefficients has been extensively studied lately.
The starting point for our investigation is the following result (cf. [14,
Theorem 6]).

Theorem A. Let + be a probability measure on T having an infinite
support, and let { # T. Then the following statements are equivalent.

(1) The derived set [supp(+)]$ of the support of + is equal to [{].

(2) We have limn � � 8n+1(+, 0) 8n(+, 0)=&{.

(3) We have limn � � �T (`&{) .n(+, `) .n+k(+, `) d+=0 for all k # Z.

We are going to extend this theorem in two directions. The first one is
motivated by the result due to D. Maki and T. Chihara (see [5], [19]).

Theorem B. Let _ be a nonnegative Borel measure on the real line with
infinite support whose moments are all finite. Let [ pn] be a system of
orthonormal polynomials with respect to _ which satisfies the three-term
recurrence relation

xpn(x)=an+1 pn+1(x)+bn pn(x)+an pn&1(x), an>0, bn=bn .

Assume that limn � � an=0 and denote by L the set of limit points of the
sequence [bn]. Then

[supp(_)]$=L. (1)

In Section 2 we study measures on T which can be viewed as the unit
circle counterparts of those in Theorem B.

Definition 1. A probability measure + on T with infinite support
belongs to class S if

lim
n � �

|8n(+, 0)|=1. (2)
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Our main result herein is the unit circle analogue of Theorem B for the
class S. An operator theoretic approach to the theory of orthogonal poly-
nomials on the unit circle proves helpful now. The equivalence (1)�(2) in
Theorem A emerges then as a very special case of Theorem 5 below. Note
that, as it follows from [20, Lemma 4, p. 110], the measures + # S are
singular with respect to Lebesgue measure on T.

The second direction is initiated by M. G. Krein's characterization of
compactly supported nonnegative Borel measures on the real line whose
support contains finitely many limit points (see [3, Theorem 2, p. 230]).
We will state M. G. Krein's theorem in a slightly modified form (see
[9, p. 152]).

Theorem C. Let _ be a nonnegative Borel measure on the real line with
infinite support whose moments are all finite. Denote by A the multiplication
operator (Af )(x)=def xf (x) in L2(_, R). Let x1 , x2 , ..., xN be N distinct real
points. Then the following statements are equivalent.

(1) [supp(_)]$=[x1 , x2 , ..., xN].

(2) For any polynomials p an operator p(A) is compact in L2(_, R) if
and only if p(xj)=0 for j=1, 2, ..., N.

Definition 2. Let {1 , {2 , ..., {N be N distinct points on T. A probability
measure + on T with infinite support belongs to class K({1 , ..., {N) if

[supp(+)]$=[{1 , {2 , ..., {N]. (3)

In Section 3 we prove the unit circle analogue of Theorem C for
+ # K({1 , ..., {N). It turns out that the case N=2 can be tackled explicitly
in terms of the reflection coefficients. The latter situation is illustrated by
the symmetrized Al-Salam�Carlitz polynomials for the unit circle (cf. [22,
Section 6]).

2. DERIVED SET OF SUPPORT AND REFLECTION
COEFFICIENTS

Let us begin with some definitions and basic results from the theory of
linear operators in a Hilbert space (spectrum of a linear operator, structure
of spectrum, H. Weyl's perturbation theorem). Among the variety of
terminological conventions we adopt one from [13, Chapter 1, Sects. 1.1�1.5],
which suits our purpose perfectly.

Let T be a bounded linear operator in a Hilbert space H. Denote by
sp(T ) the spectrum of T, that is, the set of all those complex numbers * for
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which the operator T&*I is not invertible. The spectrum of a linear
operator is known to be a compact subset of the complex plane which is
contained in the disk [* # C : |*|�&T&].

If we analize the reasons for an operator to be not invertible we come
up with the following classification of the specrum.

Definition. A complex number * belongs to a discrete spectrum
spd (T ), if there is a unit vector h for which Th=*h. A complex number *
belongs to a continuous spectrum spc(T ), if there is a noncompact sequence
of unit vectors [hn] such that limn � � (T&*I ) hn=0.

It is clear that

spd (T ) _ spc(T )/sp(T ), (4)

wherein the possibility of a proper inclusion is not ruled out. Note that the
intersection of two parts of the spectrum may be nonempty (see Example 3
below). It is well known that for normal operators (i.e., T*T=TT*) the
equality holds in (4).

Let us illustrate the foregoing definition with two examples.

Example 3. The simplest and yet by far the most important example of
a normal operator is a multiplication operator. Let F be a compact set in
the complex plane and & be a non-negative finite Borel measure with
supp(&)/F. In the Hilbert space L2(&, F) of measurable and square-
integrable functions on F with the inner product and norm

( f , g) & =
def |

F

f g� d&, & f && =
def

- ( f , f ) & ,

consider the operator (Af )(z)=zf (z). It is easy to see that * # spd (A) if and
only if &[*]>0. A bit more elaborate analysis shows that

* # spc(A) � * # [supp(&)]$,

that is, * belongs to the derived set of supp(&). In other words, the part of
supp(&) in a punctured disk B=(*)=def [z : 0<|z&*|<=] has positive
&-measure for each =>0. Therefore the nonisolated masspoints in F
constitute the intersection spd (A) & spc(A).

Example 4. Let D=def diag[z0 , z1 , ...] be a diagonal operator in the
Hilbert space l 2. Then spd (D)=[zn] and spc(D)=[zn]$, that is, the set of
all limit points of the set [zn].
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A key role throughout the whole paper is played by H. Weyl's perturbation
theorem. For reader's convenience we provide a brief proof of the simple
version of this result we need (cf. [13, Theorem 18, p. 22]).

Theorem (H. Weyl). Let T1 and T2 be linear operators for which the
difference T2&T1 is a compact operator. Then spc(T1)=spc(T2).

Proof. We proceed in two steps.

Step 1. Let [ fn] be a noncompact sequence of unit vectors. We show
that there is a subsequence [ fn]n # 4 for which the consecutive differences
[ fn+1& fn]n # 4 form a noncompact sequence. The noncompactness of [ fn]
implies the lack of finite =-net for some =>0. In other words, there is a
subsequence [ fn]n # 4$ with the property

& fn& fm&�=, n, m # 4$.

It is well known, that each bounded sequence of vectors in a Hilbert space
contains a weakly convergent subsequence. Let fn converge weakly to some
vector f for n # 4/4$. Then fn+1& fn weakly converges to zero along 4.
On the other hand & fn+1& fn&�=, n # 4, and thereby [ fn+1& fn]n # 4 is
noncompact.

Step 2. Given * # spc(T1), take the noncompact sequence of unit
vectors [hn] such that limn � �(T1&*I )hn=0. Let g=limn # 41

hn in the
weak topology. According to Step 1 we can choose [hn]n # 42

, 42 /41 with
noncompact sequence of differences [hn+1&hn]n # 42

. The compactness of
T1&T2 forces convergence in norm

lim
n # 41

(T1&T2) hn=(T1&T2) g, lim
n # 42

(T1&T2)(hn+1&hn)=0.

Hence

lim
n # 42

(T2&*I )(hn+1&hn)=0

and * # spc(T2) as needed. K

We begin the proper business of this section by developing operator
theoretic arguments related to orthogonal polynomials on the unit circle
(cf. [14, Section 3]).

For orthogonal polynomials on the real line an intimate relationship
with infinite Jacobi matrices containing the coefficients of the three-term
recurrence relation for the orthonormal polynomials is well known
(cf. [1, Chapter 4]). These Jacobi matrices are symmetric tridiagonal

65SINGULAR MEASURES ON THE UNIT CIRCLE



matrices which can be extended to self-adjoint operators acting in the
Hilbert space l 2.

For orthogonal polynomials on the unit circle there is a similar
relationship with infinite matrices, but instead of self-adjoint tridiagonal
matrices (for determinate moment problems on the real line) the unitary
Hessenberg matrices (for measures outside the Szego� class) come into play.

Fundamental results of N. I. Akhiezer, A. N. Kolmogorov, M. G. Krein,
V. I. Smirnov, and G. Szego� imply that given a probability measure + on
T with infinite support, the system of orthonormal polynomials [.n(+)]�

n=0

forms an orthonormal basis in L2(+, T) if and only if

log +$ � L1(T) � :
n

|8n(+, 0)|2=�

(cf. [15, Theorem 3.3(a), p. 49]). Throughout the rest of the paper we put
a0=1,

an=an(+) =
def 8n(+, 0), \2

n=\2
n(+) =

def
1&|an |2, n # N =

def [1, 2, ...].

In what follows a key role is played by the unitary multiplication
operator U=U(+) which acts on L2(+, T) by

[Uf ](t)=tf (t), t # T, f # L2(+, T) , (5)

and its matrix representation U� =U� (+) in the orthonormal basis
[.n(+)]�

n=0

u00 u01 } } }

U� =\u10 u11 } } } + , uij=(U.j , .i) + , (6)

b b
. . .

where

uij={
&aj+1 ai `

j

k=i+1

\k , i< j+1,

(7)
\j+1 , i= j+1,

0, i> j+1

for i, j # Z+ (cf. [14, p. 401]). Infinite matrices such as (6)�(7) in which all
entries below the subdiagonal vanish are called (upper) Hessenberg
matrices.

We can view the infinite matrix (6)�(7) as a unitary operator U� in l 2

which is unitarily equivalent to the multiplication operator U. In
particular, supp(_) agrees with the spectrum sp(U� ).
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Theorem 5. Let + # S. Denote by L the set of all limit points of the
sequence [zn=

def
&an+1 an ]. Then

[supp(+)]$=L. (8)

Proof. It is clear that limn � � |zn |=1 under assumption (2), so that
L/T.

We adopt the argument from [14, Theorem 3]. Let S be the left shift
operator in l 2 with the adjoint S*. Write the operator series expansion for
the matrix U�

U� =S*D&1(+)+ :
�

j=0

Dj (+) S j, (9)

where each D j (+) is a diagonal operator in l 2

Dj (+)=diag(Dj0 , Dj1 , ...),

Dji =
def {u i, j+i=(U.j+i , . i) + ,

u i+1, i=(U.i , .i+1) + ,
j # Z+

j=&1.
(10)

This infinite series converges in the operator norm. To see this note
that &S&=1 and [&Dj (+)&]�

j=&1 decreases exponentially in view of (2).
What is more to the point, (2) and (10) yield compactness of all diagonal
operators Dj , but D0 . Hence we can write U� =D0+K with some compact
operator K. By H. Weyl's theorem we have spc(U� )=spc(D0). But U� is
unitarily equivalent to the multiplication operator and D0 is a diagonal
operator. The desired result drops out immediately if we take into account
Examples 3 and 4. K

Example 6. Let M be any closed set on T. An example of the measure
+ # S with [supp(+)]$=M can easily be constructed. Indeed, let [|k]k�1

be a countable set of points in [0, 2?) such that [ei|k] is a dense set in
&M. Let us produce a sequence [!k] by the recipe

[!k] =
def [|1 ; |1 , |2 ; |1 , |2 , |3 ; ...].

Each point |n is clearly a limit point of [!k] and hence

[ei!k]$=&M. (11)

Next, define a sequence [�k] by

�n =
def

:
n

j=1

!j , �n&�n&1=!n .
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The measure + # S now comes in as one with reflection coefficients
an(+) =

def
(1&1�n) ei�n. In fact,

zn=&an+1 an =&
n&1
n+1

ei!n+1,

so that the set of all limit points of the sequence [zk] is M.
In particular, there are measures + # S with supp(+)=T.

Remark 7. Let us point out that nothing is claimed about the character
of singularity of the measure in Example 6.1 Following [8, Theorem 6] one
can construct a pure point measure + with given support M, such that

lim sup
n � �

|an(+)|=1. (12)

3. MEASURES WITH FINITE DERIVED SET OF SUPPORT

Within the framework of operator theoretic considerations in Section 2
the unit circle analogue of Theorem C is obvious.

Theorem 8. Let + be a probability measure on the unit circle with
in finite support and U be multiplication operator (5). Then the following
statements are equivalent.

(1) + # K({1 , ..., {N).

(2) For any polynomial P the operator P(U ) is compact in L2(+, T) if
and only if P({j)=0 for j=1, 2, ..., N.

Proof. Assume that [supp(+)]$=[{1 , {2 , ..., {N] holds. By the Spectral
Mapping Theorem for every polynomial P with P({j)=0, j=1, 2, ..., N,
the spectrum of P(U ) has no nonzero limit points. The operator P(U )
being a polynomial of a unitary operator is normal. Since all its eigenvalues
are simple, this operator is compact (cf. [16, Problem 133]). On the other
hand, if P({m){0 for some m, then the spectrum of P(U ) has a nonzero
limit point and hence this operator is a fortiori noncompact.

Conversely, put PN(z) =
def >N

k=1 (z&{k). As PN(U ) is a compact
operator, much the same argument as above shows that [supp(+)]$/
[{1 , {2 , ..., {N]. If this inclusion were a proper one, then {m � supp(+) for
some m and PN&1(U ) would be a compact operator with PN&1(z) =

def

>k{m (z&{k). The contradiction completes the proof. K
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Let T be a linear operator in a Hilbert space with an orthonormal basis
[en]�

n=0 . If T is compact, then limn � � (Ten , en+k)=0 for all k # Z.
Moreover, these conditions are equivalent as long as the matrix of T in the
basis [en] is finite�banded (see, e.g. [2, pp. 59�60]). Therefore in the real
line setting of Theorem C the operator p(A) is compact whenever

lim
n � �

( p(A) pn , pn+k) _= lim
n � � | p(x) pn(x) pn+k(x) d_=0, k # Z.

The point is that A is represented by a Jacobi matrix in the basis [ pn] and
thereby the matrix for p(A) is N�banded.

In the unit circle setting the matrix representation for P(U ) in the basis
[.n] is no longer finite�banded. That is why it is not clear at once whether
the conclusion of Theorem 8 holds under a seemingly weaker assumption

lim
n � � |

T

P(`) .n(`) .n+k(`) d+= lim
n � �

(P(U ) .n , .n+k) +=0, k # Z.

(13)

By Theorem A the latter is true for N=1.

Theorem 9. The operator P(U ) is compact in L2(+, T) if and only if
(13) holds.

Proof. We only have to prove that P(U ) is compact as long as (13)
holds. Put P(z)=>N

k=1 (z&zk) and write infinite series (9) for P(U� )

P(U� )= `
N

k=1
{S* D&1(+)+(D0&zk I )++ :

�

j=1

Dj (+) S j= , (14)

which after termwise multiplication gives

PN(U� )= :
N

m=1

(S*)m 2&m(+)+ :
�

j=0

2j (+) S j. (15)

The limit relation (13) precisely means that all diagonal operators 2l in
(15) are compact. The procedure of computing 2l explicitly from (14)�(15)
does not seem feasible in general for N�3 (we shall handle the case N=2
later on). The only exception is the lowest nonzero diagonal which
corresponds to 2&N . The computation now can be easily carried out. We
have from (14)�(15)

(S*)N 2&N(+)=S* D&1(+) S* D&1(+) } } } S* D&1(+).
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Applying repeatedly the ``commutation'' rule

diag(d0 , d1 , ...) S*=S* diag(d1 , d2 , ...)

leads to the equality

2&N(+)=diag(2&N, 0 , 2&N, 1 , ...), 2&N, i= `
N

j=1

\i+ j .

Hence (13) implies

lim
n � �

`
N

j=1

\n+ j=0. (16)

It follows from (16) and (9) that Dj (+) are compact at least for j�N
and the sequence [&Dj (+)&]�

j=&1 decreases exponentially. Therefore the
sequence [&2j (+)&]�

j=&N decreases exponentially and the series in (14) and
(15) converge in the operator norm. Since the set of compact operators in
a Hilbert space form a closed ideal, the series (15) produces the compact
operator, as needed. K

By [20, Lemma 4, p. 110] + is singular as long as (12) holds. The
converse statement is not at all true: there are plenty of singular measures
with limn � � an=0 (cf. [17], [18], [21]). However, the following partial
converse is valid.2

Corollary 10. Let + # K({1 , ..., {N). Then lim supn � � |an(+)|=1.

Proof. By the previous theorems, (13) and, in particular, (16) are valid.
Hence

lim inf
n � �

\nN+l=0

for some 1�l�N. Note that \2
k=1&|ak | 2. K

There is yet another (more natural in a sense) way to treat statements
of this kind which rests upon the orthogonality relations and the explicit
formula for the leading coefficient }n(+) (cf. [11, p. 7])

|
T

P(`) .k(`) .k+N(`) d+=
}k(+)

}k+N(+)
=\k+1 } } } \k+N (17)

for an arbitrary monic polynomial P of degree N. We can extend the result
obtained in Corollary 10 by assuming the derived set of supp(+) to be
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infinite with the ``high degree of concentration'' of the masspoints
(cf. [8, Theorem 5] for the real line case).

Theorem 11. Let Q=[!n]n�1 be a set of points on T and [N(n)] be a
strictly increasing subsequence of positive integers. Let Qn=[!1 , ..., !N(n)]
and denote by A(=n) the =n -neighborhood of Qn . Assume that a measure + on
T is subject to the following condition: the portion of supp(+) outside A(=n)
is finite for each n�1. Then (12) holds provided limn � � =1�N(n)

n =0.

Proof. Fix n and write (17) for P(z)=>N(n)
j=1 (z&` j) and N=N(n)

\k+1 } } } \k+N(n)={|A(=n)
P(`) .k(`) .k+N(n)(`) d+

+|
B(=n)

P(`) .k(`) .k+N(n)(`) d+=
where B(=n) is a finite set. Take k=k(n) large enough to have |.k(`)|<=n

for all ` # B(=n). Then

\k+1 } } } \k+N(n)�2N(n)=n+2N(n)=n

which implies lim inf \n=0 as claimed. K

It turns out that the computation of PN (U� ) can be performed explicitly
for N=2 (see [7, p. 103] for the corresponding real line result).

Theorem 12. A probability measure + # K({1 , {2) if and only if

(i) limn � � \n \n+1=0;

(ii) limn � � \n(an an&1 +an+1 an +{1+{2 )=0;

(iii) limn � � ((an+1 an +{1)(an+1 an +{2)&\2
n+1an+2 an &\2

nan+1_
an&1 )=0.

Proof. Assume first that + # K({1 , {2). Write

P2 (U� )=(U� &{1)(U� &{2)=&wkj &
�
0 ,

wkj= :
�

i=0

(uki&{1 $ki)(uij&{2 $ij).

By Theorem 8 P2 (U� ) is compact and hence for all k # Z

lim
n � �

wn, n+k= lim
n � �

(P2 (U� ) en+k , en) =0. (18)
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It is not hard to see from (7) that (18) with k=&2, &1, 0 is equivalent to
(i), (ii), and (iii), respectively.

Conversely, let (i)�(iii) hold. Much as in Theorem 9 write

P2 (U� )= `
2

k=1
{S* D&1(+)+(D0&zk I )+ :

�

j=1

Dj (+) S j=
=(S*)2 2&2(+)+S* 2&1(+)+20(+) :

�

j=1

2j (+) S j. (19)

It follows from (i) and (10) that Dj (+) are compact for j�2
and [&Dj (+)&]�

j=&1 decreases exponentially. Therefore the sequence
[&2j (+)&]�

j=&N decreases exponentially and the series in (19) converge in
the operator norm. Now, this is a matter of brute force calculation to verify
that (i), (ii), and (iii) provide compactness of 2&2 , 2\1 , and 20 , respec-
tively. Thus P2 (U� ) is a compact operator. An application of Theorem 8
completes the proof. K

Let us illustrate Theorem 12 by two examples.

Example 13. We construct a measure + with almost periodic (with
period 2) reflection coefficients an(+) such that

lim
n � �

a2n+1=`1 , |`1 |�1, lim
n � �

a2n=`2 , |`2 |=1. (20)

Then

lim
n � �

a2n a2n&1 =`0 =
def `2 `1 , lim

n � �
a2n+1 a2n =`0 . (21)

Now, take two points {1 , {2 on T which satisfy

{1={2 , {1+{1 =&(`0+`0 ). (22)

Conditions (i) and (ii) clearly follow from (21)�(22). To check (iii) note
first that by (22)

(`0+{1)(`0+{2)=(`0 +{1)(`0 +{2)

so that

lim
n � �

(an+1 an +{1)(an+1 an +{1)=(`0+{1)(`0+{2)=1&|`0 | 2.
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Next,

lim
n � �

\2
2n+1a2n+2 a2n =(1&|`1 |2) |`2 | 2=1&|`1 |2,

lim
n � �

\2
2n a2n+1 a2n&1 =(1&|`2 |2) |`1 |2=0.

The rest is immediate from |`0 |=|`1 |.

Example 14. The symmetrized Al-Salam�Carlitz polynomials for the
unit circle are introduced in [22, pp. 89�90].

Define a sequence Hn of monic polynomials on the real line by the
recurrence (cf. [6, Chapter 6, Section 10])

Hn+1(x)=xHn(x)&*nHn&1(x), n # Z+, H&1=0, H0=1 (23)

with

*2n=1&qn, *2n+1=bqn, 0<q<1, b>0.

The polynomials are known to be orthogonal with respect to a discrete
measure _ on the real line, concentrated at two sequences

_[\- 1&qk]=#k>0, _[\- 1+bqk]=$k>0, k # Z+.

The genuine interval of orthogonality is now [&- 1+b, - 1+b], so that
after the linear change of variables we come to the transformed monic
polynomials

H� n(x)=(1+b)&n�2 Hn(x - 1+b)

which are orthogonal with respect to a discrete measure _̂

_̂ {\�1&qk

1+b ==#k , _̂ {\�1+bqk

1+b ==$k ,

and satisfy the three�term recurrence similar to (23) with *� n=*n(1+b)&1.
Going over to the unit circle and denoting the associated measure by +̂, we
have by Geronimus' formulas (cf. [12, Theorem 31.1])

82n&1( +̂, 0)=0, 84n( +̂, 0)=2qn&1, 84n&2( +̂, 0)=
1&b
1+b

, n # N.
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The measure +̂, which can be viewed as a measure on [&?, ?) is symmetric
and, when restricted to the half-interval [0, ?), is concentrated at two
sequences [�\

k ] and [!\
k ] defined by

cos �\
k =

def
\�1&qk

1+b
, cos !\

k =
def

\�1+bqk

1+b
.

There are two limit points |\ in supp +̂ on [0, ?]

cos |\ =
def

\
1

- 1+b

and limn � � !\
n =limn � � �\

n =|\. Notice that !+
n +!&

n =�+
n +�&

n =?.
The conditions 82n&1( +̂, 0)=0 mean that +̂ is ``sieved''.

Now, define a measure +, which is concentrated at the sequences [\{\
k ]

and [\'\
k ] with

{+
k =2�+

k , {&
k =2�&

k &2?=&2�+
k ,

'+
k =2!+

k , '&
k =2!&

k &2?=&2!+
k ,

and +[2x]=+̂[x]. We have

lim
n � �

{\
n = lim

n � �
'\

n =\2|+

and hence the derived set of supp(+) with + viewed as a measure on T,
consists of two points

{1={2 , {1 =
def

exp[2i|+].

As for the reflection coefficients they are given by

82n(+, 0)=2qn&1, 82n&1(+, 0)=
1&b
1+b

, n # N.

We complete the paper with the example of another kind, related to the
Lo� pez classes of measures (cf. [4]).

Definition 15. A probability measure + with reflection coefficients an

belongs to the Lo� pez class LN , N # N, if

lim
n � �

|anN+ j |=rj , lim
n � �

anN+ j+1

anN+ j
=;j , j=1, 2, ..., N. (24)
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We assume further that 0<rj�1 so that ;j are nonzero complex
numbers. It is convenient to extend both sequences [rj] and [;j] as
N-periodic

rnN+ j =
def rj , ;nN+ j =

def ;j , n # N, j=1, 2, ..., N,

which implies (24) to be in effect for all j # N. Moreover, applying the
second relation in (24) repeatedly yields

lim
n � �

anN+ j+s

anN+ j
=;j ;j+1 } } } ;j+s&1 , j, s # N. (25)

In particular, for j=1, s=N we have

lim
n � �

anN+N+1

anN+1

=;1 ;2 } } } ;N

and hence |;1 ;2 } } } ;N |=1. Let us impose the normalization condition
(this is just a matter of rotation)

;1 ;2 } } } ;N=1, (26)

which is equivalent to ;m+1 ;m+2 } } } ;m+N=1 for m # N due to periodicity
of the extension.

Similarly, from (25) with j=1, s # N it follows that

|;1 ;2 } } } ;s |=
rs+1

r1

.

Let us now define ``unperturbed reflection coefficients'' [a~ n] by

a~ 0 =
def

1, a~ q =
def r1 ;1 } } } ;q&1 , q # N.

Thanks to normalization (26) the sequence [a~ n]�
1 is N-periodic and

|a~ q |=rq . In accordance with Favard's theorem it gives rise to some prob-
ability measure +~ on T and the multiplication operator on L2(+~ , T) which
is unitarily equivalent to the operator

u~ 00 u~ 01 } } }

U� =\u~ 10 u~ 11 } } } + , (27)

b b
. . .
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where

u~ ij={
&a~ j+1 a~ i `

j

k=i+1

\̂k i< j+1,

(28)
\̂j+1 , i= j+1,

0, i> j+1,

for i, j=0, 1, ..., as long as rj<1. But if rq=1 for some q, no measure
appears, yet operator U� (27)�(28) makes sence and is a unitary operator
in l2.

Let us evaluate the difference between perturbed operator U� (6)�(7)
associated with + # LN and unperturbed one U� (27)�(28). We can make use
of (9)�(10) for both U� and U� , since both [&Dj (+)&]�

j=&1 and [&D� j&]�
j=&1

decrease exponentially under the assumption min rj>0, j=1, ..., N. It is
not hard to show that the difference Dj (+)&D� j is compact for + # LN and
j=&1, 0, ..., so that U� &U� is compact as well.

Our particular interest concerns a subclass L� N of the Lo� pez class for
which max rj=1, j=1, ..., N. In this instance it is easily seen directly from
(28) that the operator U� (which has nothing to do with measures on T)
takes the form

U� =\
U0

U1

U1
. . .+ ,

where U0 and U1 are finite dimensional unitary operators. It is clear now
that spc(U� ) is a finite set. By H. Weyl's theorem the same is true for the
multiplication operator U in L2(+, T). Hence (see Example 3) the derived
set of support of + # L� N is a finite set.
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